ds format

Documentation version: 2.0.1 3.0.0 3.1.0 3.2.0 3.3.3 3.4.0 3.5.2 3.6.1 3.7.0 4.0.1 4.1.0 (latest) master
You are viewing documentation for version 3.6.0. The latest release is 4.1.0.
GitHub

Description

The ds format is both a data structure with a representation in a programming language such as Python and a storage format. In Python, the ds format is a nested dictionary structure containing data and metadata, which can be represented schematically as:

d = {
    # Variable 1 data (NumPy ndarray, a list, or a scalar):
    '<var1>': ...,
    # Variable 2 data (NumPy ndarray, a list, or a scalar):
    '<var2>': ...,
    ...,
    # Metadata.
    '.': {
        # Variable 1 metadata:
        '<var1>': {
            # Variable 1 dimensions.
            '.dims': ['<dim>', ...],
            # Variable 1 size..
            '.size': [<size>, ...],
            # Variable 1 type.
            '.type': '<type>',
            # Variable 1 attributes.
            '<attr>': ...,
            ...
        },
        # Variable 2 metadata.
        '<var2>': {
            # Variable 2 dimensions.
            '.dims': ['<dim>', ...],
            # Variable 2 size..
            '.size': [<size>, ...],
            # Variable 2 type.
            '.type': '<type>',
            # Variable 2 attributes.
            '<attr>': ...,
            ...
        },
        ...
        # Dataset metadata.
        '.': {
            # Dataset attributes.
            '<attr>': ...,
            ...
        }
    }
}

d['<var<n>>'] contain variable data as a NumPy array or Python list. d['.'] contains metadata, d['.']['<var<n>>'] contains variable metadata and d['.']['.'] contains dataset metadata.

The structure can be manipulated either directly or through the Python API, which provides convenience functions over direct manipulation. The data and metadata can be saved as NetCDF, HDF5, DS, JSON and CSV with ds.write, and loaded from NetCDF, HDF5, DS, JSON and CSV with ds.read.

Definition

Dataset

A dataset is a dictionary containing variable data and metadata.

Keys beginning with a dot (.) have a special meaning. To suppress a special meaning, names beginning with a dot and a backslash (\) have to be escaped with a backslash (prepended with a backslash).

Variable data

Variable data are a multi-dimensional array (NumPy ndarray or MaskedArray, or a Python list), or a scalar (int, float, str, bytes and bool). They are stored in the dataset under arbitrary string keys, but names beginning with a dot (.) or a backslash (\) have to be escaped (see above).

Metadata

Metadata is a dictionary containing variable metadata and dataset metadata. Metadata are stored in the dataset under a key ..

Variable metadata

Variable metadata consist of variable attributes, and optionally of variable dimensions (.dims), size (.size) and type (.type).

Variable dimensions

Variable dimensions is a list of names corresponding to the dimensions of the variable data. The names can be arbitrary strings. Variable dimensions are stored in variable metadata under a key .dims. For scalar and empty variables, variable dimensions are an empty list ([]).

Dimensions can have the same name as another variable, which is then be interpreted as the axis in certain programs such as Panoply, as is conventional in NetCDF datasets.

Variable size

Variable size is a list of sizes of each dimension of the variable data. It is populated by ds.read when reading a dataset from a file. Variable size is stored in a key .size in the variable metadata. Variable data size takes precedence over .size if variable data are defined. For scalar variables, variable size is an empty list ([]). For empty variables, variable size is None.

Variable type

Variable type is a string specifying the data type. It is populated by ds.read when reading a dataset from a file. Variable type is stored in a key .type in the variable metadata. Variable data type takes precedence over .type if variable data are defined.

Supported variable types are: float32 and float64 (32-bit and 64-bit floating-point number, resp.), int8, int16, int32 and int64 (8-bit, 16-bit, 32-bit and 64-bit integer, resp.), uint8, uint16, uint32 and uint64 (8-bit, 16-bit, 32-bit and 64-bit unsigned integer, resp.), bool (boolean), str (string) and unicode (Unicode).

Variable and dataset attributes

Attributes are objects defining variable or dataset metadata, and can be arbitrary key–value pairs, where key is a string.

Example

Using the ds interface

This is an example of two variables time and temperature stored in a dataset along with their metadata.

Using the command line interface:

ds set { time none time { 1 2 3 } } \
       { temperature none time { 16. 18. 21. } units: degree_celsius } \
       title: "Temperature data" \
       none dataset.nc

Using the Python interface:

import numpy as np
import ds_format as ds

d = {
    'time': [1, 2, 3],
    'temperature': [16., 18., 21.],
    '.': {
        '.': { 'title': 'Temperature data' },
        'time': {
            '.dims': ['time'],
        },
        'temperature': {
            '.dims': ['time'],
            'units': 'degree_celsius',
        },
    }
}
ds.write('dataset.nc', d)

The result can be viewed with ds meta dataset.nc:

.: {{
	title: "Temperature data"
}}
temperature: {{
	units: degree_celsius
	.dims: { time }
	.size: { 3 }
	.type: float64
}}
time: {{
	.dims: { time }
	.size: { 3 }
	.type: int64
}}

and ds cat time temperature dataset.nc:

time temperature
1 16.000000
2 18.000000
3 21.000000

Using the netCDF4 interface

The code produces an equivalent data file using the interface of the Python library netCDF4:

import numpy as np
from netCDF4 import Dataset

d = Dataset('dataset.nc', 'w')
d.title = 'Temperature dataset'
d.createDimension('time', 3)
time = d.createVariable('time', 'i8', ('time',))
temperature = d.createVariable('temperature', 'f8', ('time',))
temperature.units = 'degree_celsius'
time[:] = np.array([1, 2, 3])
temperature[:] = np.array([16., 18., 21.])
d.close()

The result can be viewed with ncdump dataset.nc:

netcdf dataset {
dimensions:
    time = 3 ;
variables:
    int64 time(time) ;
    double temperature(time) ;
        temperature:units = "degree_celsius" ;

// global attributes:
        :title = "Temperature dataset" ;
data:

 time = 1, 2, 3 ;

 temperature = 16, 18, 21 ;
}